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Abstract: In this paper, independent component 
analysis (ICA) is used for blind source separation of 
biomedical signals. Visual and quantitative tests of the 
ability of ICA to separate signals were performed 
using a fast ICA algorithm. Results obtained from 
simulated and FECG signals show that the ICA 
performance using the whitening matrix of the mixed 
signals was superior to that of random initial weights. 
 

I. INTRODUCTION 
 

The problem of detecting and separating a desired 
biomedical signal corrupted by other periodic interference 
and random noise signals is of extreme importance in 
medicine. Examples include the Fetal Electrocardigraph 
(FECG) [1], His Purkinje System Electrogram (HPSE) 
[2], Ventricular Late Potentials (VLP) [3], and the 
Diaphragmatic Electromyogram (EMGdi) [4].  Electronic 
random noise and 50 Hz power line interference represent 
two major sources of undesired signals in all of the above 
applications. The random noise signal generated by 
muscular activities corrupts the FECG, HPSE and VLP 
signals. Also, the ECG is considered as an undesired 
signal in both the FECG and EMGdi. The FECG signal 
reflects the electrical activity of the fetal heart. It contains 
information on the health status of the fetus and therefore, 
an early diagnosis of any cardiac defects before delivery 
increases the effectiveness of the appropriate treatment 
[1]. The HPSE signal is recorded at the body surface as 
microvolt potentials that reflect the electrical activity of 
the specialized conduction system of the heart. It helps to 
further understand the physiology and identify various 
cardiac pathologies associated with the HPS and not with 
the myocardium. VLP are microvolt signals that are part 
of the terminal portion of the QRS complex and continue 
into the ST-T segment. They represent areas of delayed 
ventricular activation, which are manifestations of slowed 
conduction velocity. One of the most advantages of 
detecting VLP is the ability to predict the likelihood of 
sustained ventricular tachycardia, ventricular fibrillation, 
and sudden cardiac death in patients post myocardial 
infarction. The EMGdi signals are recorded during 
inspiration and expiration and used for respiration 
monitoring and respiratory control mechanis ms. From the 
clinical point of view, the EMGdi can be used to assess 

the level of respiratory fatigue which is characterized by a 
progressive inability of respiratory muscles to maintain the 
work load demanded by the respiratory drive.  In addition 
to separating signal from noise, the estimation, location 
and distribution of the electric current sources within the 
brain from the Electroencaphalograph (EEG) signals are 
fundamental problems in the area of neurological 
monitoring and instrumentation [5].  
For each of the above signals, several research groups 
have proposed different techniques to improve the signal 
to noise ratio (SNR) of the desired signal. Ensemble 
averaging, spatial averaging, cross-correlation, adaptive 
filtering and wavelet analysis were among several of these 
techniques [2-4, 6-7].  Despite the reported successes of 
these methods, they are still not used clinically at a large 
scale. In this research, we aim to investigate the use of 
independent component analysis technique for the 
detection of desired biomedical signals mixed with other 
types of undesired signals.  
Technically, the above problem can be thought of as a set 
of desired and undesired signals linearly mixed to produce 
another set of body surface signals. It is assumed that 
these signals are nongaussian (except the random noise 
signal) and independent. ICA decomposes the mixed 
signals into as statistically independent components as 
possible. ICA has been used recently to detect FECG [1] 
and to process magnetoencephalogram (MEG) data [8].  
Several ICA algorithms have been proposed. In this paper, 
the Fast ICA (FICA) algorithm, which was proposed by 
[9-11], is used.  
Section II includes the theory of ICA followed by results 
obtained from computer simulations and biomedical signal 
analysis as shown in in section III. Finally, conclusions 
and future work are given in section IV. 
 

II. THEORY 
 
Assume that the set of desired and undesired signals, S, 
have been mixed to produce an array of body surface 
signals, O. This can be modeled by a linear latent vector, 
O, as shown in the following equation:  
 

MSO =      (1) 
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M, the mixing matrix, is constant and assumed to be 
unknown and square. The components of S are 
independent variables and all but the random noise are 
assumed to have nongaussian distributions.  
Several methods have been used to find a suitable linear 
transformation including principle component analysis 
(PCA), factor analysis and ICA. In the PCA and factor 
analysis methods, the components must be uncorrelated 
and orthogonal. However, ICA can be used with 
independent and not necessarily orthogonal signal 
components. ICA is a statistical method for transforming 
an observed multidimensional random vector O into 
components that are statistically as independent from each 
other as possible. The problem is how to recover 
independent sources, S, given the observed outputs, O in 
which the sources have been mixed linearly using an 
unknown mixing matrix M. Solving the ICA model is 
equivalent to estimating the matrix M using only the 
information contained in the mixture O, finding its 
inverse, say W, and obtain the independent components S 
simply by: 
 

WXS =      (2) 
 

The ICA estimation consists of two phases: the learning 
phase and the processing phase. During the learning 
phase, the ICA algorithm finds a demixing matrix W, 
which minimizes the mutual information between 
variables. The processing phase is the actual source 
separation. To estimate the mixing matrix W, different 
cost functions were proposed in the literature [9-11]. 
These methods usually involve nonlinearity which shapes 
the probability density function of the source signal 
towards nongaussianity. To measure nongaussianity, 
higher order statistics such as kurtosis and negentropy can 
be used [9-11].   
In this research the FICA algorithm developed by 
Hyvarinen [11] was used. It is based on a fixed-point 
iteration scheme for finding a maximum of the 
nongausianity of WX. It was found that the FICA 
algorithm has a number of desirable properties such as: (1) 
fast convergence  (2) computationally simple, requires 
little memory space and easy to use (3) flexibility in using 
the nonlinearity functions [11]. For sphered data, the one-
unit FastICA algorithm has the following form:  
 

       w(k)=E{xg(w(k -1)Tx)}-E{g ′ (w(k -1)Tx)}w(k -1)        (3) 
 

where the weight vector W is also normalized to unit norm 
after every iteration. The function g is the derivative of the 
function G which is an even nonquadratic and sufficiently 
smooth function. The choice of G(u)=(1/a1)log cosh(a1u), 

where 1 ≤ a1
 ≤ 2 is some suitable constant was found to 

achieve the fastest convergence.  Function G is used in the 
general contrast function J that measures the non-
normality of a zero-mean random variable y: 
 

JG(y)=|Ey{G(y)}- Eνν {G(νν)}|p    (4) 
 

where νν is a standardized Gaussian random variable, and 
the exponent p=1,2 typically.  
Despite the above good properties, logistic drawbacks 
have been noticed which affected the usefulness of the 
algorithm:  
1) The order of the signals was changing after different 

runs. This prevented us from indexing the signals, 
which is very important for clinical applications. Even, 
in many applications, one does not need to estimate all 
the independent components. In the ideal case where the 
one-unit contrast functions are optimized globally, the 
independent components are obtained in the order of 
(descending) non-Gaussianity.  

2) Although that the outputs signals resemble the input 
signals morphology, the gain factor is not unity. This 
may give false indications of the source magnitude 
values. 

3)  Sometimes the output signals are inverted in a random 
manner at different runs. 

 
III. RESULTS 

 
To investigate the usefulness of the FICA algorithm in 
separating desired from undesired signals, visual and 
quantitative experiments were conducted on simulated and 
biomedical signals. The data used for this study was 
contributed by Lieven De Lathauwer [12,13]. These 
signals were recorded from eight different skin electrodes 
located on different points of a pregn
Five of these simultaneous signals containing MECG and 

thoracic region containing only MECG. Fig.1 shows eight  
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Fig.1: Output of the FICA using random weights. 
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signals obtained after applying the FICA algorithm where 
the initial weights were selected randomly. It was found 
that the random noise was estimated as the first 
independent component while the desired FECG was 
estimated as the seventh component. Furthermore, it was 
also found that the order of the FECG signal was changing 
after almost every run of FICA. This problem was solved 
by using the whitening matrix computed using PCA to 
initialize the weights. The whitening matrix represents the 
eigenvectors of the covariance matrix of the observed 
signals. Fig. 2 shows the same eight signals but the FECG 
was estimated as the first independent component.   
To further investigate this problem, three signals were 
simulated:   a periodic pulsating signal, a sinusoidal signal 
and a Gaussian random signals which resemble the 
desired, interference and noise signals respectively as 
shown in Fig 3. Fig. 4 shows the signals after being mixed 
with a mixing matrix M. Fig. 5 shows the output signals 
extracted using the FICA algorithm were the whitening 
matrix was again used to initialize the weights of the 
FICA algorithm.  It was also found that the order of the 
estimated independent components was fixed after 
performing several runs.   
The importance of the whitening matrix stems from the 
fact that PCA acts to orthogonolize and decorrelate the 
mixed signals. It is clear that the covariance matrix of the 
mixed signals has a great role in determining the 
Guassianity of these signals. Therefore, the magnitude of 
the eigenvalues helps to speed the FICA algorithm to 
search for an estimate of the first non-Gaussian 
independent component.   
To quantify the performance of the FICA with random 
initial weights against using the whitening matrix, the 
percent root mean square difference was used. It is defined 
as: 
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Fig.2: Output of the FICA using whitening matrix. 
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Fig.3: Simulated pulsating signal with periodic 

interference and random noise. 
 
where Source(i) is the ith sample of the original pre-mixed 
desired signal, Estimated(i) is the ith sample of the 
estimated desired signal and N is the total number of 
source samples under test.  
Fig. 6 shows the averaged PRD% of the desired pulsating 
signal versus its SNR at the input of the FICA for both 
random and whitening matrices. Results show that the 
PRD% is almost zero when using the whitening matrix 
while it ranges between 30%-50% when using random 
initial weights. These results confirm the earlier findings.   
 

 IV. CONCLUSIONS 
 
Independent component analysis can be used to solve the 
problem of separating desired biomedical from undesired 
biomedical, random and periodic noise signals. In this 
paper, the FICA algorithm was used to detect the FECG. It 
was found that it suffers from a number of practical 
limitations. The effect of initial weights on the FICA 
algorithm performance was investigated.   
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Fig.4: Simulated signals after being mixed. 
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Fig.5: Output simulated signals after FICA. 

 
Results obtained from simulated and FECG signals show 
that the whitening matrix of the mixed signals was 
superior to the random initial weights. The desired 
periodic signals were estimated more accurately.  Future 
research will focus on solving other problems such as 
scaling and phase inversion.  
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